Deep Convolutional Compressed Sensing for LiDAR Depth Completion

نویسندگان

  • Nathaniel Chodosh
  • Chaoyang Wang
  • Simon Lucey
چکیده

In this paper we consider the problem of estimating a dense depth map from a set of sparse LiDAR points. We use techniques from compressed sensing and the recently developed Alternating Direction Neural Networks (ADNNs) to create a deep recurrent auto-encoder for this task. Our architecture internally performs an algorithm for extracting multi-level convolutional sparse codes from the input which are then used to make a prediction. Our results demonstrate that with only two layers and 1800 parameters we are able to out perform all previously published results, including deep networks with orders of magnitude more parameters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully-Convolutional Measurement Network for Compressive Sensing Image Reconstruction

Recently, deep learning methods have made a significant improvement in compressive sensing image reconstruction task. However, it still remains a problem of block effect which degrades the reconstruction results. In this paper, we propose a fully-convolutional network, where the full image is directly measured with a convolutional layer. Thanks to the overlapped convolutional measurement, the b...

متن کامل

Joint convolutional neural pyramid for depth map super-resolution

High-resolution depth map can be inferred from a lowresolution one with the guidance of an additional highresolution texture map of the same scene. Recently, deep neural networks with large receptive fields are shown to benefit applications such as image completion. Our insight is that super resolution is similar to image completion, where only parts of the depth values are precisely known. In ...

متن کامل

Compressive Sensing via Convolutional Factor Analysis

We solve the compressive sensing problem via convolutional factor analysis, where the convolutional dictionaries are learned in situ from the compressed measurements. An alternating direction method of multipliers (ADMM) paradigm for compressive sensing inversion based on convolutional factor analysis is developed. The proposed algorithm provides reconstructed images as well as features, which ...

متن کامل

Cell Detection with Deep Convolutional Neural Network and Compressed Sensing

The ability to automatically detect certain types of cells in microscopy images is of significant interest to a wide range of biomedical research and clinical practices. Cell detection methods have evolved from employing hand-crafted features to deep learningbased techniques to locate target cells. The essential idea of these methods is that their cell classifiers or detectors are trained in th...

متن کامل

A Deep Error Correction Network for Compressed Sensing MRI

Compressed sensing for magnetic resonance imaging (CS-MRI) exploits image sparsity properties to reconstruct MRI from very few Fourier k-space measurements. The goal is to minimize any structural errors in the reconstruction that could have a negative impact on its diagnostic quality. To this end, we propose a deep error correction network (DECN) for CSMRI. The DECN model consists of three part...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018